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Coding theory  

X Y 
m ∈ ∑k Noise 

x = C(m) ∈ ∑n 

y 

C: ∑k  ∑n 

Error correcting codes m 

decode 
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Communication channels 
Design of C depends on properties of channel. 
 
 
 
•  This talk: 

•  We view channel as a jammer that (may) be malicious. 
•  Refer to malicious jammer also as adversary. 
•  In general, y=x+e (this will change later …). 
•  All jammers considered will have a power constrain p: 
   at most pn characters of x can be changed: |e|≤pn.  

 

X Y 
x e y=x+e 
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Success criteria 
• Let D: ∑n        ∑k  be a decoder. 

• C,D is said to allow the communication of m over 

channel if  Pre[D(C(m)+e)=m] ~ 1. 
• Probability over channel. 

C: ∑k  ∑n 

X Y 
x=C(m) y=x+e e 

• C,D is said to allow the communication of ∑k over 

channel if  Prm,e[D(C(m)+e)=m] ~ 1. 
• Probability uniform over ∑k and over channel. 

• Rate of C is k/n; Capacity = maximal achievable rate. 

• Success criteria:  
•  Average error (Prm,channel[D(y)=m] ~ 1). 
•  Maximum error: stochastic codes (random encoding).  

•  Stress:  
• No shared information between X and Y. 



Random jammer 
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“Folklore” 

X Y 
x e y=x+e 

• What is known when error is 
random (change uniformly with 
probability p)? 

• Will consider different alphabet 
sizes: q=|∑|. 

• For binary case (q=2): 
• Capacity = 1-H(p) 

 
• For “large” alphabets: 

• Capacity = 1-p 



Adversarial jammer X Y 
x e y=x+e 

• Malicious jammer controlling the 
error: 
• Knows code shared by X and Y. 
• Sees codeword x sent by X. 
• Plans an error e to disturb comm.  
• Error of weight at most pn. 
 

• For binary case (q=2): 
• 1-H(p) > Capacity ≥ 1-H(2p) 

• For large alphabets: 
• Capacity = 1-2p 
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Min. distance: 2pn+1 



This talk: Online adversaries 
• What happens if adversary behaves in an 

“online” or “causal” manner. 
• Adversarial jammer is still malicious. 
• Adversary still knows code shared by X 

and Y, but has partial information 
regarding the codeword x. 

• Adversary sees codeword x “character by 
character”, must base its decisions on 
what it has seen so far. 

• Adv. is stronger than random jammer. 
• Online adv. is weaker than “unlimited” adv.  
• What rate can be achieved? 

X Y 
x e y=x+e 
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Motivation: why online? 
•  Natural channel: intriguing open questions.  
•  Large alphabet setting: 

•  Online setting fits applications in which X  
   sends codewords consisting of n packets (characters). 
•  Each packet is sent independently over time. 
•  Decoding is done only after all packets arrive. 
•  Adversary has limited jamming power: can corrupt  
   only pn packets. 
•  Corresponds to wireless comm. (“Jam or listen”). 

•  Binary setting: 
•  Understanding capacity of unlimited adversarial channel:            
   major open question (codes of large min. dist.). 
•  A better understanding of online adv. 
   may advance our understanding. 

 

X Y 
x e y=x+e 

1

Theme: study natural channels that are somewhere between 
“unlimited adversarial jammer” and “random jammer”. 

• Combine perspective/tools from IT and TCS. 



Results: 
•  Major questions we address: 

• Is the online capacity equal to that of unlimited adversary? • Is the online capacity equal to that of random adversary? 

•  Lets start with the binary alphabet: 
 •  One may search for upper and lower bounds. 
 •  Upper bound: • min(1-4p,1-H(p)). 

• Recently improved. 
• When p≥0.25 rate R=0. 
• Just like “unlimited adversary”! 

•  Online capacity differs from that of random adversary. 

•  However, does it equal to that of unlimited adversary? 
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• Proof combinatorial in nature: 
• Turans theorem. 
• Plotkin bound. 
• Probabilistic arguments 



Results for binary case: 
Q: Is the online capacity equal to that of unlimited adversary? 
•  GV bound of 1-H(2p) is best known lower bound for 

unlimited adversaries. 

•  We show: Online capacity is strictly greater than GV. 
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Hints on separation between online 
and unlimited adversarial channels. 

R

p 

1 

0.5 0.25 

[Sha48] 

[GilbertVarshamov] 

Online 



Summary for binary case 
•  Separation between the online channel and previously 

studied “strong” and “weak” channels.  

•  What about large alphabets? 
•  We address same questions. 
•  Problem is significantly different as  
    large alphabets allow “rich” encodings. 
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Our results: large q=|∑| 
• Is the online capacity equal to one of the extremes? 

•  Unlimited adversary/Random adversary? 
• Yes!  

• We get a full characterization of the capacity. 

• Turns out that an online adversary is  
    just as strong as one which is not online. 
• Namely, capacity equals that of  
    unlimited adversary: 1-2p. 

• Are we done? 
12 
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What about delay? 
• Up to now we considered restricting the adversary by 

forcing causality. 
• Namely, after the jammer sees x1,x2,…,xi it makes a 

decision on the value of ei. •  What if due to computational or communication 
delays, the value of ei must be decided on solely 
based on x1,x2,…,xi-dn for some delay param d>0. 

• New adv. is still stronger than random jammer. 
• New adv. is still weaker than “unlimited” adv. 
• What is the capacity in this case? 
• Here also we have a full characterization for large q! 
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X Y 
x e y=x+e 

xi xj 

dn 



What about delay? 
•  What if due to computational or communicational delays, the value of ei 

must be decided on solely based on x1,x2,…,xi-d for some delay param 
d>0. •  New adv. is still stronger than random noise. 

•  New adv. is still weaker than “unlimited” adv. 
•  What is the capacity in this case? 
•  Here also we have a full characterization! 

• Wait! Once we have delay it is interesting to consider 
the error model: 
• Additive: y=x+e. 
• Overwrite: If sends ei then yi=ei. • When xi is known to jammer there is no difference 

between the two. But in our setting (d>0) there is. 
14 

X Y 
x e y=x+e 



Results for delay>0 
Additive error 

•  Turns out that for any 
delay d>0 the adversary is 
very weak. 

•  Namely, capacity equals 
that of random channel: 1-p. 
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X Y 
x e y 

Overwrite error 
•  Differs substantially from 

additive case. 
•  Capacity depends on d. 
•  As expected, when d is 

larger the capacity is 
greater “=“ 1-2p+d. 

•  Cutoff at p=0.5. 
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In both cases we prove upper and lower bounds: 
• Achievability is efficient (encoding and decoding). 

Large q. 

No delay: 
Online = unlimited adv. 



Summary: no delay 

Binary: • Capacity does not equal random 
channel (upper bound). 

• Capacity seems to differ from 
adversarial channel (improved GV). 

 
Large alphabets: 
• Capacity equals to adversarial 

channel. 
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Summary: with delay 
Binary: • Additive: constant fraction of 

delay = random jammer. 
• Overwrite: not studied yet … 

Large alphabets: 
• Additive: single character of delay 

= random jammer. 
• Overwrite: capacity somewhere 

between random and unlimited adv. 
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Online [upper bound] 

“Retrospect”: 
•  Intriguing model of study with “unexpected” 
behavior. 
•  Being online does not seem to be that much of 
restriction to the adversary. 
•  Delay plays a significant role in capacity. 
• “The present is more important than future”. 

Rest of talk: 
• Will give a flavor of a few proof techniques. 
•  Present:  

•  Upper bound for binary case (no delay). 
•  Achievability for large alphabets with delay in 
additive model. 
•  Achievability for large alphabets with delay in 
overwrite model. 



Related work 
•  To the best of our knowledge, communication in the presence of 

an online adversary (with or without delay) has not been 
explicitly addressed in the literature. 

•  Nevertheless, the model of online channels, being a natural one, 
has been “on the table” for several decades. 
•  Appears as open question in book of Csisz´ar and Korner.     

In chapter of AVC’s (arbitrarily varying channels). 

•  Variants of causal adversaries that have been defined/studied: 
•  [BlackwellBreimanThomasian], [Csisz’arKorner], [JaggiL.HoEffros], 

[SahaiMitter], [Sarwate], [NutmanL.]. 

•  Would be glad to hear of previous work. 
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Proof of binary upper bound 

• Will show R = 0 for p=0.25. • This matches the bound 
 for “unlimited adversaries” and  
separates from random jammer. 
 
 

Proof overview: 
• Need to present adversarial strategy. 
• Two step plan “wait and push”: 

• “Wait” and listen to gather information. 
• Make a decision and “push” codeword in certain 

direction. 
19 
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“Wait and push” 
• Would like to prove that R = 0 for p = 0.25. 
• Will show that using any code (encoder and decoder) of rate ε>0 

will imply a decoding error of at least ≈ ε. 
•  Phase I: “wait” 

• Adversary just listens for a short while: say εn/4 bits. 
• Constructs the set of codewords that are consistent with view. 
• * is the actual codeword transmitted. 

20 

          *       * 
 
  *       *      * 
  

     *     * 
 
     *           * x=C(m) 

εn/4  

Rate ε=k/n: 
#codewords = 2εn 
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Online [upper bound] 



“Wait and push” 
• Would like to prove that R = 0 for p = 0.25. 
• Will show that using any code (encoder and decoder) of rate ε>0 

will imply a decoding error of at least ≈ ε. 
•  Phase I: “wait” 

• Adversary just listens for a short while: say εn/4 bits. 
• Constructs the set of codewords that are consistent with view. 
• * is the actual codeword transmitted. 
• Claim 1: w.h.p. set is of size 2Ω(εn). • Now pick a random codeword * from set.  
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εn/4  

          *       * 
 
  *       *      * 
  

     *     * 
 
     *           * 

Rate ε=k/n: 
#codewords = 2εn 
Averaging argument. 
Follows from rate = ε. 
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Online [upper bound] 
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Online [upper bound] 
“Wait and push” 
• Would like to prove that R = 0 for p=0.25. 
• Will show that using any code (encoder and decoder) of rate ε>0 

will imply a decoding error of at least ≈ ε. 
•  Phase I: “wait” 

• Adversary just listens for a short while: say εn/4 bits. 
• Constructs the set of codewords that are consistent with view. 
• * is the actual codeword transmitted. 
• Claim 1: w.h.p. set is of size 2Ω(εn). • Now pick a random codeword * from set.  
• Claim 2: w.p. ≈ ε: dist(*,*) < 2p = ½. 
• Assume Claims 1, 2 hold. 
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x=C(m) 

εn/4  

          *       * 
 
  *       *      * 
  

     *     * 
 
     *           * 

Averaging argument. 
Follows from rate = ε. 

•  Plotkin: no large set 
of codewords that are 
mutually far apart.  
•  Turan’s Theorem: 
must be many close 
pairs of codewords. 
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Online [upper bound] 
“Wait and push” 
• Would like to prove that R = 0 for p=0.25. 
• Will show that using any code (encoder and decoder) of rate ε>0 will 

imply a decoding error of at least ≈ ε. 
•  Phase I: “wait” (* = actual codeword, * = random one picked by adv.) 

• Claim 1: w.h.p. set is of size 2O(εn). 
• Claim 2: w.p. ≈ ε: dist(*,*) < 2p = 1/2. 

•  Phase II: “push” 
• Each entry in * that differs from *: flip w.p. ½. • This pushed * towards *. 
• Claim 3: when Y receives corrupted word,  
    cannot decide whether * or * were sent. 

23 
x=C(m) 

εn/4  

          *       * 
 
  *       *      * 
  

     *     * 
 
     *           * 

•  In both cases, 
distribution Y views is 
exactly the same. 
•  Formally need Bayes’ 
theorem (and few 
other ideas). 

All in all, adv. forces 
error of ≈ ε (Claims 1,2 
must hold). 

? 

Theorem:  
Any code (encoder and decoder) of rate ε > 0 
will imply a decoding error of at least ≈ ε. 



Breather … 
Just seen: • Upper bound for binary alphabets 

(no delay). 
• Same technique gives upper bound 

for large alphabets. 

Large alphabets with delay: 
• Additive: single character of delay 

= random jammer. • Overwrite: capacity somewhere 
between random and unlimited adv. 
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Large alphabets 
•  Model: 

• Errors: additive. 
• Delay: decide on ei based on xj, j≤i-dn. 

•  Capacity 
•  1-p for any d > 0. 
• As this is the capacity of random channel - we only 

need a lower bound  (encoding + decoding). 
  

25 
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Main idea: use codes for an erasure channel: 
•  Let m=m1…mk be X’s message. 
•  Encode m using an erasure code (RS for example). 
•  To each symbol xi of codeword add an authentication mechanism.  
•  Namely, to each symbol xi will add a pair (h,h(xi)). •  h is will be drawn independently by X from a family H of hashes. 
•  Design H in such a way that: 

•  Easy for Y to authenticate. 
•  “Cannot” add an error ei that will pass authentication. 

•  So after authentication, Y uses erasure decoding. 

x=C(m) 

xi xj 

dn 

Model: delay > 0, 
errors additive. 

xi,h,h(xi) 

+ 

ei 



Large alphabets 
•  Model: 

• Errors: overwrite. 
• Delay: decide on ei based on xj, j≤i-dn. 

•  Capacity: 
• 0 if p > ½. 
•  1-p if p < d. 
•  1-2p+d if p ≥ d.     
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X Y 
x e y 

x=C(m) 

xi xj 

dn 
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 Why won’t previous scheme work? 
•  Adding authentication info. in each packet to get an erasure channel. 
•  Overwrite adv.: can put in fake packet that will pass authentication. 
•  Need new ideas … 

Differs from capacity of 1-p 
in additive case when d>0. 



Lower Bound 
Model: errors = overwrite, delay = ei based on xj, j≤i-dn. 

Lower bound: 1-p if p < d, 1-2p+d if p ≥ d 
     
Variant on reduction to erasure codes. More involved. 
 
•  Let m=m1…mk be X’s message. 
•  Encode m using an erasure code (RS for example). 
•  To each symbol xi of codeword add authentication mechanism.  
•  This time authentication information added to symbol xi will 
include information from all other symbols xj! 
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Lower Bound 
Model: errors = overwrite, delay = ei based on xj, j≤i-dn. 

Lower bound: 1-p if p < d, 1-2p+d if p ≥ d 
     
Variant on previous idea that reduces to erasure codes. 
 
•  Let m=m1…mk be X’s message. 
•  Encode X using an erasure code (RS for example).  
•  This time authentication information in symbol xi will include 
information from all other symbols xj! •  Enables pairwise authentication (xi,xj). •  Corrupted info will pass pairwise test only if: 

•  Both xi and xj are corrupted. 
•  xi corrupted after adv. knows value of xj. •  Need to use pairwise independent hash family. 

•  How to decode? 
28 

x=C(m) 

xi xj 
dn 

R

p 

1 

1 

d 

0.5 



Lower Bound 
Lower bound: 1-p if p < d, 1-2p+d if p ≥ d 
     
Variant on previous idea that reduces to erasure codes. 
 
• Corrupted info will pass pairwise test only if: 

•  Both xi and xj are corrupted. 
•  xj corrupted after adv. knows value of xi. •  Use pairwise independent hash family. 

•  How to decode? 
•  Case 1: p < d. 
•  Main idea: construct “chains” of consistent “close” pairs. 
•  Largest chain will be of length (1-p)n and thus allow decoding. 
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Close = distance at most dn. 
• Will not enable authentication of 
corrupted and uncorrupted pair. 



Lower Bound 
Lower bound: 1-p if p < d, 1-2p+d if p ≥ d 
     
Variant on previous idea that reduces to erasure codes. 
 
• Corrupted info will pass pairwise test only if: 

•  Both xi and xj are corrupted. 
•  xj corrupted after adv. knows value of xi. •  Use pairwise independent hash family. 

•  How to decode? 
•  Case 2: p ≥ d. 
•  As before: construct chain of mutually consistent “close” pairs. 
•  Chain may be disconnected!  
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corrupted and uncorrupted pair. 

dn dn 



Lower Bound 
Lower bound: 1-p if p < d, 1-2p+d if p ≥ d 
     
Variant on previous idea that reduces to erasure codes. 
 
• Corrupted info will pass pairwise test only if: 

•  Both xi and xj are corrupted. 
•  xj corrupted after adv. knows value of xi. •  Use pairwise independent hash family. 

•  How to decode? 
•  Case 2: p ≥ d. 
•  As before: construct chain of mutually consistent “close” pairs. 
•  Chain may be disconnected!  
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Close = distance at most dn. 
• Will not enable authentication of 
corrupted and uncorrupted pair. 

dn dn 

Which connected components are good ones? 
•  Need to construct at least (1-2p+d)n uncorrupted entries to decode. 
•  Check consistency among all possible chain combinations ⇒ expensive. 
 
•  Turns out that one can prove: 

•  Not too many correct (green) chains ≤ p/d. 

•  Put it all together ⇒ limited exhaustive search + erasure decoding! 

Rate: 1-2p+d 



Summary/thoughts   
•  Theme: study channels that are somewhere between 

“unlimited adversarial jammer” and “random noise”. 

•  This talk: online (causal) adversaries. 
•  Large alphabets (now) understood, small not fully … 
•  Causal adversary still strong…… but delays can weaken him. 
•  Types of error matter (add./overwrite/…?). 
•  “Present is more important than future”. 

•  May consider other channel models based on theme: 
•  Jammer has other limited views of codeword [L].  
•  Jammer does not have full knowledge of codebook [Ahlswede][Lipton][L]

[MicaliPeikertSudanWilson] [SarwateGastpar]. 
•  Gaussian additive channel. 
•  Causality in network error correction (time vs. topology [Nutman L]).  

Thanks! 


