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Coding theory
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Communication channels X——Y

X el y=x+e

Design of C depends on properties of channel.

® This talk:
® We view channel as a that (may) be
® Refer to malicious jammer also as
® In general, y=x+e (this will change later .. )
® All jammers considered will have a constrain p:
at most pn characters of x can be changed: |e|<pn.



®Success criteria:
® Average error (Pr, .. [D(y)=m]~ 1). n
®* Maximum error: stochastic codes (random encoding).  *

® Stress:
*No shared information between X and V.

® C D is said to allow the communication of m over
channel if Pr_[D(C(m)+e)=m] ~ 1.

° Probability over channel.

® €D is said to allow the communication of X over
channel if Pr, [D(C(m)+e)-m] ~ 1.

® Probability uniform over >*and over channel.
y of Cis k/n; = maximal achievable rate.

X ——— Y
x=C(m) £ y=X+e



Random jammer

°* What is known when error is
random (change uniformly with
probability p)?

* Will consider different alphabet
sizes: g=|)|.

® For binary case (q=2):
® Capacity = 1-H(p)

° For "large"” alphabets:
® Capacity = 1-p

X——Y

X e,‘§ y=Xx+e

3
(binary)
[Sha48]
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Adversarial jammer X——Y

X e,‘& y=Xx+e

° Malicious jammer controlling the

Min. distance: 2pn+1
error:

® Knows code shared by X and Y. lt\ Coinary)

® Sees codeword x sent by X. T S
® Plans an error ¢ to disturb comm. ¢ [\'\.

° Error of weight at most pn. g‘g_»o'?

® For binary case (q=2):

° 1-H(p) > Capacity = 1-H(2p)
° For large alphabets:

® Capacity = 1-2p




This talk: Online adversaries

WhaT happens if adver'sary behaves inan % .,

"or ' manner.
° Adversarial jammer is still malicious. T
® Adversary still knows code shared by X " 0253?
and Y, but has partial information =

regarding the codeword x. :

Adversary sees codeword x “character by
character”, must base its decisions on i
what it has seen so far. R

° Adv. is than random jammer.

Online adv. is than “unlimited” adv. A
® What rate can be achieved? » :JE(MTB e




Theme: study natural channels that are somewhere between
“unlimited adversarial jammer" and "random jammer".
®Combine perspective/tools from IT and TCS.

® Large alphabet setting:

® Online setting fits applications in which X
sends codewords consisting of n packets (characters).

® Each packet is sent independently over time.

® Decoding is done only after all packets arrive.

® Adversary has limited jamming power: can corrupt
only pn packets.

® Corresponds to wireless comm. ("Jam or listen").

® Binary setting:

® Understanding capacity of unlimited adversarial channel:
major open question (codes of large min. dist.).s

® A better understanding of online adv.

may advance our understanding. \




*Proof combinatorial in nature:
®*Turans theorem.
*Plotkin bound.
*Probabilistic arguments

° Is the online capacity equal to that of unlimited adversary?
® Is the online capacity equal o that of random adversary?

Lets start with the binary alphabet: 1

° One may search for and bounds.
® Upper bound: [Sha4s]
() mln(1—4p,1-H(P)) I [GilbertVarshamov]

® Recently improved.

® When p=0.25 rate R=0.

[ ] . " o o " H
Just like “unlimited adversary“l 025 05 9

p—>

° Online capacity differs from that of random adversary.

* However, does it equal to that of unlimited adversary?



Results for binary case:

Q: Is the online capacity equal to that of unlimited adversary?

* GV bound of 1-H(2p) is best known lower bound for
unlimited adversaries.

* We show: Online capacity is strictly greater than GV.

Theorem 1.2. For any p such that H(2p) € (0, 1) there exists a d, > 0 such that

[Sha48]

Hints on separation between online
and unlimited adversarial channels.

[GilbertVarshamov]
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Summary for binary case

Separation between the online channel and previously
studied "strong” and "weak" channels.

Theorem 1.2. For any p such that H(2p) € (0, i)) there exists a 6,, > 0 such that

Coniine(p) 2 1 — H(2p) + 0.

* What about large alphabets? 1

We address same questions. [Shat8]

* Problem is significantly different as l k[&'bmv‘]“"“"“vl
large alphabets allow “rich” encodings.

0.25 05
p—>
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Our results: large q=|>|

® Is the online capacity equal to one of the extremes?
® Unlimited adversary/Random adversary?

® Yes!

® We get a full characterization of the capacity.
1

Turns out that an online adversary is

as one which is not online. |
° Namely, capacity that of i
unlimited adversary: 1-2p.

® Are we done?

12



> xy
What about delay: :

® Up to now we considered restricting the adversary by
forcing causality.

° Namely, after the jammer sees x,,x,,.. x it makes a
decision on the value of ¢.

What if due to computational or communication
delays, the value of ¢, must be decided on solely

based on x;,x,..., for some delay param d>0.
° New adv. is still than random jammer.
® New adv. is still than “unlimited” adv.

What is the capacity in this case?
[
Here also we have a for large g

13



What about delay? X——Y

X eﬂk y=Xx+e

What if due to computational or communicational delays, the value of ei

must be decided on solely based on x;,x,,.., -, for some delay param
d>0.

New adyv. is still than random noise.

New adv. is still than “unlimited” adv.

What is the capacity in this case?
Here also we have a

Waitl Once we have delay it is interesting to consider
the error model:

° Additive: y=x+e.
® Overwrite: If sends e, then y-¢..

When X, is known to jammer there is no difference
between the two. But in our setting (d>0)

14



Large q.
In both cases we prove upper and lower bounds: X Y

®Achievability is efficient (encoding and decoding).
x ek vy
Additive error Overwrite error
° Turns out that for any ® Differs substantially from
delay d>0 the adversary is additive case.
weak. ® Capacity depends on d.
® Namely, capacity equals ° As expected, when d is
that of channel: 1-p. larger the capacity is

greater "=" 1-2p+d.
° Cutoff at p=0.5.

T

" No delay:
Online = unlimited adv.




Summary: no delay

Binary:
° Capacity does not equal random
channel (upper bound).

° Capacity seems to differ from

adversarial channel (improved GV).

Large alphabets:

° Capacity equals to adversarial
channel.

b

| [Sha48]

[GilbertVarshamov]
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Summary: with delay

"Retrospect™ P!

® Intriguing model of study with “"unexpected”
behavior.

® Being online does not seem to be that much of
restriction to the adversary.

® Delay plays a significant role in capacity.
**The present is more important than future”.

[Sha48]

[GilbertVarshamov]

X —»

Rest of talk:

*Will give a flavor of a few proof techniques.

® Present:
® Upper bound for binary case (no delay).
® Achievability for large alphabets with delay in
additive model.
® Achievability for large alphabets with delay in
overwrite model.




X

Related work Xe—gj’

® To the best of our knowledge, communication in the presence of
an online adversary (with or without delay) has not been
explicitly addressed in the literature.

Nevertheless, the model of online channels, being a natural one,
has been “on the table” for several decades.

° Appears as open question in book of Csisz” ar and Korner.
In chapter of AVC's (arbitrarily varying channels).

* Variants of causal adversaries that have been defined/studied:

* [BlackwellBreimanThomasian], [Csisz'arKorner], [Jaggil.HoEffros],
[SahaiMitter], [Sarwate], [NutmanL.].

Would be glad to hear of previous work.
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Proof of binary upper bound

°* Will show R = 0 for p=0.25.
° This matches the bound

for "unlimited adversaries” and T
separates from random jammer. k S

0.25 05

Proof overview: P>
° Need to present adversarial strategy.
° Two step plan "wait and push”:

® "Wait" and listen to gather information.

® Make a decision and "push” codeword in certain
direction.

b

e
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#

“"Wait and pus h" ;E e —

® Would like to prove that R = O for p = 0.25. 025 05

® Will show that using any code (encoder and decoder) of rate >0
will imply a decoding error of at least ~ . pate c=k/n:

® Phase I: “wait” #codewords = 2"
° Adversary just listens for a short while: say ¢n/4 bits.
° Constructs the set of codewords that are consistent with view.
is the actual codeword transmitted.

* %
* % *
en_/ff * %
|
* *

x=C(m)
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#

“"Wait and pus h" ;E e —

® Would like to prove that R = O for p = 0.25. 025 05

®* Will show that using any code (encoder and decoder) of rate ¢>0
will imply a decoding error of at least = ¢. Averaging argument.

® Phase I: “wait” Follows from rate = «.
° Adversary just listens for a short while: s7« 4 bits.
Constructs the set of codewords that ¢« consistent with view.
is the actual codeword transmitter:
Claim 1: w.h.p. set is of size 2°("),

° Now pick a random codeword * from set. £
x *x

en/4 = o
e *x *x

x=C(m)

21
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“Wai.r Oﬂd pUSh" ° Plofi\in: :§4ic]lrge set

of codewords that are

mutually far apart.
Will show that using any code (encoder and ® Turan's Theorem:

will imply a decoding error of af least ~¢. ‘must be many close

® Would like to prove that R = O for p=0.25.

° Phase I: "wait" pairs of codewords.
® Adversary just listens for a short while: s/ - bits.
° Constructs the set of codewords that ¢ sistent with view.

®  is the actual codeword transmitter

Claim 1: w.h.p. set is of size 2°("),
° Now pick a random codeword * from set. *\ *
® Claim 2: w.p. ~ e: dist(*, )< 2p = =.
Assume Claims 1, 2 hold.

en/4 * *

x=C(m)
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Theorem: ® Tn both cases,
Any code (encoder and decoder) of rate ¢ > O distribution Y views is
will imply a decoding error of at least = ¢. exactly the same.

o : _ _ ® Formally need Bayes'
. Would like to prove that R = O for p=0.25. theorem (and few

Will show that using any code (encoder and | j4p.51. ideas)
imply a decoding error of at least ~ «. -

® Phase I: "wait" (= actual codeword, * = randc’  _ picked by adv.)

® Claim 1: w.h.p. set is of size 2001, All in all, adv. forces
® Claim 2: w.p. = e dist(*, )<2p=1/2. error of = ¢ (Claims 1,2
® Phase II: "push” must hold).
° Each entry in  that differs from *: 7 .p w.p. +.
° This pushed towards *. x %
® Claim 3: when Y receives corrupted word,
cannot decide whether or * were sent. N? 57
\
- AN A WA N S
—_——— o X

x=C(m)
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Breather .. T k\

Just seen: R

° Upper bound for binary alphabets
(no delay).

° Same technique gives upper bound
for large alphabets.

Large alphabets with delay:

° Additive: single character of delay
= random jammer.

[ . q
Overwrite: capacity somewhere
between random and unlimited adv.




Main idea: use codes for an erasure channel: Model: delay > O,
*Let be X's message. errors additive.
® Encode m using an erasure code (RS for example).
® To each symbol x; of codeword add an authentication mechanism.
® Namely, to each symbol x; will add a pair
® h is will be drawn independently by X from a famlly of hashes.
® Design H in such a way that:

® Easy for Y to authenticate.

® "Cannot"” add an error ¢, that will pass authentication.
® So after authentication, ¥ uses erasure decoding.

° for any

° As this is the capacity of random channel - we only
need a lower bound (encoding + decoding).




Why won't previous scheme work?

® Adding authentication info. in each packet to get an erasure channel.
° adv.: can put in packet that will authentication.
® Need new ideas ...

* Model:
* Errors: overwrite.
® Delay: decide on ¢, based on x;, j<i-dn.

° Capacity: Differs from capacity of 1-p
* 0if p> +. in case when d>0.
* 1-pifp<d.
* 1-2p+d if p 2 d.
dn
X . €= X.

J |

x=C(m)



dn
«—>

Lower Bound e ——

x=C(m)
Model: errors = overwrite, delay = ¢; based on x;, j=<i-dn.

Lower bound: 1-p if p<d, 1-2p+d if p > d
Variant on reduction to erasure codes. More involved.

® Let m=m,..m, be X's message.

® Encode m using an erasure code (RS for example).
® To each symbol x; of codeword add authentication mechanism.
® This time authentication information added to symbal x; will
include information from all other symbols x|




dn

Lower Bound —

x=C(m)

Model: errors = overwrite, delay = ¢; based on x;, j=<i-dn.

Lower bound: 1-p if p<d, 1-2p+d if p > d

W)y,

Variant on previous idea that reduces to erasure codes.

® Let m=m,..m, be X's message.
® Encode X using an erasure code (RS for example).
® This time authentication information in symbol x; will include
information from all other symbols x|
® Enables pairwise authentication (x,,x ).
® Corrupted info will pass pairwise test only if:
® Both x; and x, are corrupted.
® X cor'r'up’red after adv. knows value of x..

® Need to use pairwise independent hash famJily.

® How to decode?




Lower Bound

Lower bound: 1-p if p<d J-2p+dif p>d

Variant on previous idea that reduces to erasure codes.

®Corrupted info will pass pairwise test only if:

® Both x; and x, are corrupted.

® x, corrupted after adv. knows value of x;.
® Use pairwise independent hash family.

Close = distance at most dn.

®* How to decode? *Will not enable authentication of
®Case 1. p<d. corrupted and uncorrupted pair.
® Main idea: construct "chains” of consistent "close” pairs.
® Largest chain will be of length (1-p)n and thus allow decoding.

29



Lower Bound

Lower bound: 1-p if p < d{ 1-2p+d if p > d

Variant on previous idea that reduces to erasure codes.
®Corrupted info will pass pairwise test only if: (('))

® Both x; and x, are corrupted.

® x, corrupted after adv. knows value of x;.
® Use pairwise independent hash family.

Close = distance at most dn.

®* How to decode? *Will not enable authentication of
® Case 2: p > d. corrupted and uncorrupted pair.
® As before: construct chain of mutually consistent “close” pairs.
® Chain may be disconnected!




Which connected components are good ones?
® Need to construct at least (1-2p+d)n uncorrupted entries to decode.
® Check consistency among all possible chain combinations = expensive.

® Turns out that one can prove: Rate: 1-2p+d
® Not too many correct (green) chains < p/d.

® Put it all ’roge’rher' = limited exhaustive sear'ch + erasure decoding
e — T T
® Both x; and X, are corrupted.
® X cor'rup’red after adv. knows value of x..

® Use palr'W|se independent hash family.

Close = distance at most dn.
®* How to decode? *Will not enable authentication of
® Case 2: p > d. corrupted and uncorrupted pair.
® As before: construct chain of mutually consistent “close” pairs.
® Chain may be disconnected!




Summary/thoughts

* Theme: study channels that are somewhere between
“unlimited adversarial jammer® and "random noise".

* This talk: online (causal) adversaries.
* Large alphabets (now) understood, small not fully ...

° Causal adversary still strong...... but delays can weaken him.
* Types of error matter (add./overwrite/...?).
* "Present is more important than future”. Thanks!

°* May consider other channel models based on theme:

* Jammer has other limited views of codeword [L].

* Jammer does not have full knowledge of codebook [Ahlswede][Lipton]]
[MicaliPeikertSudanWilson] [SarwateGastpar].

* Gaussian additive channel.
* Causality in network error correction (fime vs. topology [Nutman L]).



