Coding for Online Adversaries

Bikash Dey Ishay Haviv Sidharth Jaggi Michael Langberg Anand Sarwate

Coding theory

Communication channels X-

Design of C depends on properties of channel.

This talk:

- We view channel as a jammer that (may) be malicious.
- Refer to malicious jammer also as adversary.
- In general, y=x+e (this will change later ...).
- All jammers considered will have a power constrain p: at most pn characters of x can be changed: |e| <pn.

Random jammer

- What is known when error is random (change uniformly with probability p)?
- Will consider different alphabet sizes: q= 2.
- For binary case (q=2):
 Capacity = 1-H(p)
- For "large" alphabets: Capacity = 1-p

Adversarial jammer

- Malicious jammer controlling the error:
 - Knows code shared by X and Y.
 - Sees codeword × sent by X.
 - Plans an error e to disturb comm.
 - Error of weight at most pn.
- For binary case (q=2):
 1-H(p) > Capacity ≥ 1-H(2p)
 For large alphabets:
 Capacity = 1-2p

This talk: Online adversaries

- What happens if adversary behaves in an "online" or "causal" manner.
- Adversarial jammer is still malicious.
- Adversary still knows code shared by X and Y, but has partial information regarding the codeword x.
- Adversary sees codeword × "character by character", must base its decisions on what it has seen so far.
- Adv. is stronger than random jammer.
- Online adv. is weaker than "unlimited" adv. ¥
- What rate can be achieved?

"large" q

0.5

Theme: study natural channels that are somewhere between "unlimited adversarial jammer" and "random jammer". Combine perspective/tools from IT and TCS.

Large alphabet setting:

- Online setting fits applications in which X sends codewords consisting of n packets (characters).
- Each packet is sent independently over time.
- Decoding is done only after all packets arrive.
- Adversary has limited jamming power: can corrupt only pn packets.
- Corresponds to wireless comm. ("Jam or listen").

Binary setting:

- Understanding capacity of unlimited adversarial channel: major open question (codes of large min. dist.).
- A better understanding of online adv. may advance our understanding.

Proof combinatorial in nature:
Turans theorem.
Plotkin bound.
Probabilistic arguments

$$C \leq \min_{\bar{p} \in [0,p]} \left[\left(1 - 4(p - \bar{p}) \right) \left(1 - H\left(\frac{\bar{p}}{1 - 4(p - \bar{p})} \right) \right) \right].$$

- Is the online capacity equal to that of unlimited adversary?
 Is the online capacity equal to that of random adversary?
- Lets start with the binary alphabet:
- One may search for upper and lower bounds.
- Upper bound:
 - **min(1-4**p,1-H(p)).
 - Recently improved.
 - When p≥0.25 rate R=0.
 - Just like "unlimited adversary"!
- Online capacity differs from that of random adversary.
- However, does it equal to that of unlimited adversary?

Results for binary case:

Q: Is the online capacity equal to that of unlimited adversary?

- GV bound of 1-H(2p) is best known lower bound for unlimited adversaries.
- We show: Online capacity is strictly greater than GV.

Theorem 1.2. For any p such that $H(2p) \in (0, \frac{1}{2})$ there exists a $\delta_p > 0$ such that

 $C_{\text{online}}(p) \ge 1 - H(2p) + \delta_p.$

[Sha48]

0 25

1

R

[GilbertVarshamov]

05

Hints on separation between online and unlimited adversarial channels.

Summary for binary case

 Separation between the online channel and previously studied "strong" and "weak" channels.

Theorem 1.2. For any p such that $H(2p) \in (0, \frac{1}{2})$ there exists a $\delta_p > 0$ such that

 $C_{\text{online}}(p) \ge 1 - H(2p) + \delta_p.$

- What about large alphabets?
- We address same questions.
- Problem is significantly different as large alphabets allow "rich" encodings.

Our results: large $q = |\Sigma|$

Is the online capacity equal to one of the extremes?
 Unlimited adversary/Random adversary?

• Yes!

• We get a full characterization of the capacity.

Turns out that an online adversary is just as strong as one which is not online.
 Namely, capacity equals that of unlimited adversary: 1-2p.

"large" q

[Reed-Solomon]

Are we done?

dn

What about delay?

• Up to now we considered restricting the adversary by forcing causality.

- Namely, after the jammer sees x₁,x₂,...,x_i it makes a decision on the value of e_i.
- What if due to computational or communication delays, the value of e_i must be decided on solely based on $x_1, x_2, ..., x_{i-dn}$ for some delay param d>0.
- New adv. is still stronger than random jammer.
- New adv. is still weaker than "unlimited" adv.
- What is the capacity in this case?
- Here also we have a full characterization for large q!

What about delay?

- What if due to computational or communicational delays, the value of eimust be decided on solely based on x₁,x₂,...,x_{i-d} for some delay param d>0.
- New adv. is still stronger than random noise.
- New adv. is still weaker than "unlimited" adv.
- What is the capacity in this case?
- Here also we have a full characterization!
- Wait! Once we have delay it is interesting to consider the error model:
 - Additive: y=x+e.

Overwrite: If sends e_i then y_i=e_i.

When x_i is known to jammer there is no difference between the two. But in our setting (d>0) there is. In both cases we prove upper and lower bounds: •Achievability is efficient (encoding and decoding).

Large q.

Additive error

- Turns out that for any delay d>0 the adversary is very weak.
- Namely, capacity equals that of random channel: 1-p.

Overwrite error

- Differs substantially from additive case.
- Capacity depends on d.
- As expected, when d is larger the capacity is greater "=" 1-2p+d.

No delay:

<u>Online = unlimited adv.</u>

Cutoff at p=0.5.

Summary: no delay

Binary:

- Capacity does not equal random channel (upper bound).
- Capacity seems to differ from adversarial channel (improved GV).

Large alphabets:

Capacity equals to adversarial channel.

Summary: with delay

"Retrospect":

 Intriguing model of study with "unexpected" behavior.

 Being online does not seem to be that much of restriction to the adversary.

Delay plays a significant role in capacity.

•"The present is more important than future".

Rest of talk:

Will give a flavor of a few proof techniques.Present:

- Upper bound for binary case (no delay).
- Achievability for large alphabets with delay in additive model.

 Achievability for large alphabets with delay in overwrite model.

Related work

- To the best of our knowledge, communication in the presence of an online adversary (with or without delay) has not been explicitly addressed in the literature.
- Nevertheless, the model of online channels, being a natural one, has been "on the table" for several decades.
 - Appears as open question in book of Csisz' ar and Korner. In chapter of AVC's (arbitrarily varying channels).
- Variants of causal adversaries that have been defined/studied:
 - [BlackwellBreimanThomasian], [Csisz'arKorner], [JaggiL.HoEffros], [SahaiMitter], [Sarwate], [NutmanL.].
- Would be glad to hear of previous work.

Proof of binary upper bound

Will show R = 0 for p=0.25.
This matches the bound for "unlimited adversaries" and separates from random jammer.

Proof overview:

- Two step plan "wait and push":
 - "Wait" and listen to gather information.
 - Make a decision and "push" codeword in certain direction.

"Wait and push"

- Would like to prove that R = 0 for p = 0.25.
- Will show that using any code (encoder and decoder) of rate ε>0 will imply a decoding error of at least ~ ε.
 Rate ε=k/n:
- Phase I: "wait"
 - Adversary just listens for a short while: say say say <a href="mailto:ay bits.
 - Constructs the set of codewords that are consistent with view.
 - * is the actual codeword transmitted.

[Sha48]

0.25

#codewords = $2^{\epsilon n}$

[GilbertVarshamov]

0.5

"Wait and push"

- Would like to prove that R = 0 for p = 0.25.
- Will show that using any code (encoder and decoder) of rate $\varepsilon>0$ will imply a decoding error of at least $\approx \epsilon$.
- Phase I: "wait"
 - Adversary just listens for a short while: s
 - Constructs the set of codewords that g consistent with view.
 - is the actual codeword transmitted
 - Claim 1: w.h.p. set is of size 29(en)
 - Now pick a random codeword * from set.

Averaging argument. Follows from rate = ε .

4 bits.

"Wait and push"

- Would like to prove that R = 0 for p=0.25.
- Will show that using any code (encoder and will imply a decoding error of at least ~ 8.
- Phase I: "wait"
 - Adversary just listens for a short while: s
 - Constructs the set of codewords that g
 - * is the actual codeword transmitted
 - Claim 1: w.h.p. set is of size 2^{Ω(en)}.
 - Now pick a random codeword * from set.
 - Claim 2: w.p. $\approx \varepsilon$: dist(*,*) < 2p = $\frac{1}{2}$.
 - Assume Claims 1, 2 hold.

x = C(m)

εn/4

[Sha48]

Plotkin: no large set of codewords that are mutually far apart.
Turan's Theorem: must be many close pairs of codewords.

> r bits. sistent with view.

Theorem:

Any code (encoder and decoder) of rate $\epsilon > 0$ will imply a decoding error of at least $\approx \epsilon$.

- Would like to prove that R = 0 for p=0.25.
- Will show that using any code (encoder and imply a decoding error of at least ~ 8.
- Phase I: "wait" (* = actual codeword, * = randq
 - Claim 1: w.h.p. set is of size 20(m).
 - Claim 2: w.p. ≈ ε: dist(*,*) < 2p = 1/2.</p>
- Phase II: "push"
 - Each entry in * that differs from *: 1 /p w.p. ½.
 - This pushed * towards *.
 - Claim 3: when Y receives corrupted word, cannot decide whether * or * were sent.

In both cases, distribution Y views is exactly the same.
Formally need Bayes' theorem (and few other ideas).

e picked by adv.)

All in all, adv. forces error of ~ & (Claims 1,2 must hold).

Breather ..

Just seen:

- Upper bound for binary alphabets (no delay).
- Same technique gives upper bound for large alphabets.

Large alphabets with delay:

- Additive: single character of delay = random jammer.
- Overwrite: capacity somewhere between random and unlimited adv.

Main idea: use codes for an erasure channel:

Let m=m₁...m_k be X's message.

Model: delay > 0, errors additive.

- Encode m using an erasure code (RS for example).
- To each symbol x_i of codeword add an authentication mechanism.
- Namely, to each symbol x_i will add a pair $(h,h(x_i))$.
- h is will be drawn independently by X from a family H of hashes.
- Design H in such a way that:
 - Easy for Y to authenticate.
 - "Cannot" add an error e_i that will pass authentication.

So after authentication, Y uses erasure decoding.

1-p for any d > 0.

 As this is the capacity of random channel - we only need a lower bound (encoding + decoding).

..h.h(x

Why won't previous scheme work?

- Adding authentication info. in each packet to get an erasure channel.
- Overwrite adv.: can put in fake packet that will pass authentication.
- Need new ideas ...
 - Model:
 - Errors: overwrite.
 - Delay: decide on e_i based on x_i, j≤i-dn.
 - Capacity:
 - 0 if p > ½.
 - 1-p if p < d.
 - 1-2p+d if p ≥ d.

Differs from capacity of 1-p in additive case when d>0.

Model: errors = overwrite, delay = e_i based on x_j , $j \le i$ -dn.

Lower bound: 1-p if p < d, 1-2p+d if $p \ge d$

Variant on reduction to erasure codes. More involved.

Let m=m₁...m_k be X's message.
Encode m using an erasure code (RS for example).
To each symbol x_i of codeword add authentication mechanism.
This time authentication information added to symbol x_i will include information from all other symbols x_i!

0.5

Model: errors = overwrite, delay = e_i based on x_j , $j \le i$ -dn.

Lower bound: 1-p if p < d, 1-2p+d if $p \ge d$

Variant on previous idea that reduces to erasure codes.

- Let m=m₁...m_k be X's message.
- Encode X using an erasure code (RS for example).
- This time authentication information in symbol x_i will include information from all other symbols $x_i!$
- Enables pairwise authentication (x_i, x_i).
- Corrupted info will pass pairwise test only if:
 - Both x_i and x_i are corrupted.
 - x corrupted after adv. knows value of x.
- Need to use pairwise independent hash family.
- How to decode?

0.5

Lower bound: 1-p if p < d, 1-2p+d if $p \ge d$

Variant on previous idea that reduces to erasure codes.

- Corrupted info will pass pairwise test only if:
 Both x_i and x_j are corrupted.
 - x, corrupted after adv. knows value of x.
- Use pairwise independent hash family.
- How to decode?
- Case 1: p < d.</p>
- Main idea: construct "chains" of consistent "close" pairs.
- Largest chain will be of length (1-p)n and thus allow decoding.

Close = distance at most dn.

•Will not enable authentication of

corrupted and uncorrupted pair.

Lower bound: 1-p if p < d(1-2p+d if p ≥ d)

Variant on previous idea that reduces to erasure codes.

Corrupted info will pass pairwise test only if:
 Both ×_i and ×_j are corrupted.

• x_j corrupted after adv. knows value of x_j.

• Use pairwise independent hash family.

- How to decode?
- Case 2: p ≥ d.

• As before: construct chain of mutually consistent "close" pairs.

Chain may be disconnected!

Which connected components are good ones?

Need to construct at least (1-2p+d)n uncorrupted entries to decode.
 Check consistency among all possible chain combinations => expensive.

• Turns out that one can prove:

• Not too many correct (green) chains $\leq p/d$.

• Put it all together \Rightarrow limited exhaustive search + erasure decoding!

- Both x_i and x_i are corrupted.
- x, corrupted after adv. knows value of x,
- Use pairwise independent hash family.
- How to decode?
- Case 2: p ≥ d.

Close = distance at most dn. •Will not enable authentication of corrupted and uncorrupted pair.

Rate: 1-2p+d

- As before: construct chain of mutually consistent "close" pairs.
- Chain may be disconnected!

Summary/thoughts

- Theme: study channels that are somewhere between "unlimited adversarial jammer" and "random noise".
- This talk: online (causal) adversaries.
 - Large alphabets (now) understood, small not fully ...
 - Causal adversary still strong..... but delays can weaken him.
 - Types of error matter (add./overwrite/...?).
 - "Present is more important than future".

Thanks!

- May consider other channel models based on theme:
 - Jammer has other limited views of codeword [L].
 - Jammer does not have full knowledge of codebook [Ahlswede][Lipton] [MicaliPeikertSudanWilson] [SarwateGastpar].
 - Gaussian additive channel.
 - Causality in network error correction (time vs. topology [Nutman L]).